Skip to main content

Creating libraries and .NET Standard

As part of his fantastic 'What is .NET standard' presentation at DDD12, Adam Ralph provided an amazing amount of detail in such a short amount of time. One of the most valuable points, which is completely obvious when you think about it, is how you should work with .NET standard when creating libraries.

NET standard now comes in a multitude of flavours: currently 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6 and 2.0. When starting out with something new, we (as developers) often want to be as cutting edge as possible and probably haven't read the small print / finer details. So as a result, when creating our first .NET standard library a natural tendency is to create it targeting .NET Standard 2.0. Of course, that makes perfect sense - it's the newest so must be the best? It's definitely true, it is the latest and has the largest .NET framework coverage. BUT, and it is a big but. The library you are building can now only be used by other libraries targeting .NET Standard 2.0 (and newer). If the consumer of your library wants, or must, target .NET standard 1.6 (or older) then they will be unable to use your library due to this version incompatibility.

Therefore when starting a new library targetting .NET standard you should always start with targeting 1.0 and only increase the targeted version when you run into an unsupported framework call. If you are able to create a library that can target .NET standard 1.0 you should be really happy, it has the highest level of compatibility and will make your library's consumers lives much easier.

Like I say, when it's highlighted it makes perfect sense but I'm sure we've all seen that "Target .NET Standard Version" dropdown and wondered "When there's 2.0, why would I ever consider anything 1.x!"

Comments

Popular posts from this blog

Mocking HttpCookieCollection in HttpRequestBase

When unit testing ASP.NET MVC2 projects the issue of injecting HttpContext is quickly encountered.  There seem to be many different ways / recommendations for mocking HttpContextBase to improve the testability of controllers and their actions.  My investigations into that will probably be a separate blog post in the near future but for now I want to cover something that had me stuck for longer than it probably should have.  That is how to mock non abstract/interfaced classes within HttpRequestBase and HttpResponseBase – namely the HttpCookieCollection class.   The code sample below illustrates how it can be used within a mocked instance of HttpRequestBase.  Cookies can be added / modified within the unit test code prior to being passed into the code being tested.   After it’s been called, using a combination of MOQ’s Verify and NUnit’s Assert it is possible to check how many times the collection is accessed (but you have to include the set up calls) and that the relevant cookies have …

Injecting HttpContextBase into an MVC Controller

It is a shame that when the ASP.NET MVC framework was released they did not think to build IoC support into the infrastructure. All the major components of the MVC engine appear to magically inherit instances of HttpContext and it’s related objects – which can cause no end of problems if you are trying to utilise Unit Testing and IoC. Reading around various articles on the subject just to get around this one problem requires the implementation of several different concepts and you are still left with a work around. The code below, along with the other links referenced in this article is my stab at resolving the issue. There’s probably nothing new here, but it does attempt to relate all the information needed to do this for Castle Windsor. The overview is that all controllers will need to inherit from a base controller, which takes an instance of HttpContext into it’s constructor. It then overrides the property HttpContext in the main controller class, supplying it’s own version…

Unit Testing Workflow Code Activities - Part 1

When I first started looking into Windows Workflow one of the first things that I liked about it was how it separated responsibilities. The workflow was responsible for handling the procedural logic with all it's conditional statements, etc. Whilst individual code activities could be written to handle the business logic processing; created in small easily re-usable components. To try and realise my original perception this series of blog posts will cover the unit testing of bespoke code activities; broken down into: Part One: Unit testing a code activity with a (generic) cast return type (this post)Part Two: Unit testing a code activity that assigns it's (multiple) output to "OutArguments" (Not yet written)So to make a start consider the following really basic code activity; it expects an InArgument<string> of "Input" and returns a string containing the processed output; in this case a reverse copy of the value held in "Input".namespace Ex…